首页研究生考试考研数学2024年考研数学二考试大纲原文
下载文档
/ 0
全屏查看
2024年考研数学二考试大纲原文
还有 0 页未读 ,您可以 继续阅读 或 下载文档
1、预览文字与文档原文有一定的出入,仅作参考。如需使用,请下载文档源文件!
2、本文档共计 0 页,下载后文档不带水印,支持完整阅读内容或进行编辑。
3、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
4、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
5、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
2024年考研数学二考试大纲原文考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试三、试卷内容结构高等教学约80%线性代数约20%四、试卷题型结构单项选择题10小题,每小题5分,共50分填空题6小题,每小题5分,共30分解答题(包括证明题)6小题,共70分高等数学一、函数、极限、连续函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数函数关系的建立.数列极限与函数极限的定义及其性质、函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限:sin xlim=1→0函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念、了解反函数及隐函数的概念、掌握基本初等函数的性质及其图形、了解初等函数的概念、理解极限的概念、理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系4.掌握极限的性质及四则运算法则5.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.6.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限7.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型8.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这二、一元函数微分学导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分3.了解高阶导数的概念,会求简单函数的高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a.b)内,设函数(x)具有二阶导数当f"(x)>0时,f(x)的图形是凹的;当f"()<0时,f(X)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径三、一元函数积分学原函数和不定积分的概念、不定积分的基本性质、基本积分公:式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-菜布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用.考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法3.会求有理函数、三角函数有理式和简单无理函数的积分4.理解积分上限的函数,会求它的导数,掌握牛顿一菜布尼茨公式5.了解反常积分的概念,会计算反常积分6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值四、多元函数微积分学多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域.上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极
文档评分
    请如实的对该文档进行评分
  • 0
发表评论
返回顶部